

Results from the Herschel Gould Belt survey:
 Toward a New Paradigm for Star Formation on GMC scales?

Philippe André CEA

Laboratoire AIM Paris-Saclay

PACS

Journées ASA - Grenoble - 12 Nov 2013

The Herschel Gould Belt Survey

SPIRE/PACS 70-500 $\mu \mathrm{m}$ imaging of the bulk of nearby ($\mathrm{d}<0.5 \mathrm{kpc}$) molecular clouds ($\sim 250 \mathrm{deg}^{2}$), mostly located in Gould's Belt.
$>$ Complete census of prestellar cores and Class 0 protostars.

http://gouldbelt-herschel.cea.fr/
$\sim 15 "$ resolution
at $\lambda \sim 200 \mu \mathrm{~m}$
$\leftarrow \rightarrow$
$\sim 0.02 \mathrm{pc}$
< Jeans length
@ $\mathbf{d}=300 \mathrm{pc}$
Motivation: Key issues on the early stages of star formation

- What generates prestellar cores \& drives their evolution to protostars ?
- Nature of relationship between the prestellar CMF \& the IMF ?

Outline:

- «Universality » of the filamentary structure of the ISM
- The key role of filaments in the star formation process
- Implications and future prospects

Herschel
GB survey IC5146
Arzoumanian et al. 2011

With: D. Arzo manian, V. Könyves, P. Palmeirim, A. Menshchikov, N. Schneider, A. Roy, N. Peretto, P. Didelon, J. Di Francesco, S. Bontemps, F. Motte, D. Ward-Thompson, J. Kirk, M. Griffin, S. Pezzuto, S. Molinari, J.Ph. Bernard, V. Minier, B. Merin, N. Cor A Zavagno, L. Testi \& the Herschel Gould Belt KP Consortium

Filamentary structure of the cold ISM prior to SF

Gould Belt Survey Herschel // mode 70/160/250/350/500 $\mu \mathrm{m}$

> Polaris flare translucent cloud $\quad(\mathbf{d} \sim \mathbf{1 5 0} \mathbf{p c})$
> $\sim 5500 \mathrm{M}_{\odot}(\mathrm{CO}+\mathrm{HI})$

Heithausen \& Thaddeus ' 90
$\sim 13 \mathrm{deg}^{2}$ field
Miville-Deschênes et al. 2010 Ward-Thompson et al. 2010 Men'shchikov et al. 2010 André et al. 2010

A\&A vol. 518

Evidence of the importance of filaments prior to Herschel but ... much fainter filaments + universality with Herschel

Extinction map of Musca

Cambrésy 1999
See also:
Schneider \& Elmegreen 1979; Abergel et al. 1994; Johnstone \& Bally 1999;
N. Cox et al. + Pereyra \& Magelhaes 2004 Hatchell+2005; Hily-Blant \& Falgarone 2007; Myers 2009 ...

+ Many numerical simulations

Very common pattern: main filament + network of perpendicular striations or "sub-filaments"

Taurus B211/3 filament: M/L~50 M/pc P. Palmeirim et al. 2013

$>$ Suggestive of accretion flows into the main filaments

$$
\begin{aligned}
& \text { DR21 in Cygnus } X \text { : } \\
& \text { M/L } \sim \mathbf{4 0 0 0} \mathrm{M}_{\circ} / \mathrm{pc}
\end{aligned}
$$

M. Hennemann, F. Motte et al. 2012

Also Schneider ea. 2010, Csengeri ea. 2011

Characterizing the structure of filaments with Herschel

Taurus B211/3 filament Palmeirim et al. 2013, SPIRE $250 \mu \mathrm{~m}$

Ph. André - Journées ASA - 12/11/2013

Radius [pc]

Filaments have a characteristic inner width ~0.1 pc

Arzoumanian et al. 2011, A\&A, 529, L6
D. Arzoumanian's PhD thesis

Using the DisPerSE algorithm (Sousbie 2011) to trace the crest of each filament

Statistical distribution of widths for > 270 filaments

$>$ Strong constraint on the formation and evolution of filaments

Filament width ~ $0.1 \mathrm{pc} \sim$ sonic scale of ISM turbulence \downarrow

Filaments due to dissipation of large-scale turbulence ?

of shock-compressed structures in the turbulent fragmentation scenario

Simulations of turbulent fragmentation

Padoan, Juvela et al. 2001, ApJ, 553, 227
$>$ Filaments from a combination of MHD turbulent compression and shear;
(Hennebelle 2013, A\&A, 556, A153)

Filament width vs. Column density

Arzoumanian et al. 2011, A\&A, 529, L6
D. Arzoumanian's PhD thesis

At low densities, consistent with model of polytropic filaments ($\mathbf{P} \sim \rho^{\gamma}$ with $\gamma \sim 0.8$) in pressure equilibrium with a typical ISM pressure $\mathbf{P}_{\text {ext }} / \mathbf{k}_{\mathrm{B}} \sim 5 \times 10^{4} \mathrm{~K} \mathrm{~cm}^{-3}$ (Inutsuka, in prep.)

See also Fischera \& Martin 2012, A\&A, 542, A77 for a similar model for isothermal filaments

Evidence of accretion of background material (striations) onto self-gravitating filaments

Example of the B211/3 filament in the Taurus cloud ($\mathbf{M}_{\text {line }} \sim 54 \mathbf{M}_{\odot} / \mathbf{p c}$) Palmeirim et al. 2013

CO observations from Goldsmith et al. 2008

Filament width vs. Column density

Arzoumanian et al. 2011
D. Arzoumanian's PhD thesis

At high densities, consistent with a model of accreting filaments
(Hennebelle \& André 2013, A\&A)
> Balance between 'accretiondriven turbulence' (Klessen \& Hennebelle '10) and dissipation of MHD turbulence due to ion-neutral friction

See also Heitsch 2013a,b

Prestellar cores form primarily along filaments

1 pc

Cores

Part of Taurus SPIRE $250 \mu \mathrm{~m}$

Cores: temperature and density structure derived from Herschel data

16
HGBS Program (Abel inversion)

14 Nielbock et al. 2012 EPoS Program (2D ray-tracing)

Identification of new, extreme Class 0 objects: Prime targets for follow-up studies with ALMA, PdB

Two candidate FPCs in Perseus B1-bS and B1-bN
(no Spitzer $24 \mu \mathrm{~m}$, but Herschel 70/100 $\mu \mathrm{m}$)
protostellar cores » (FPCs) (cf. Larson 1969)
\rightarrow SEDs consistent with
FPCs (cf. Commerçon+2012)
SerpS-MM19 (Maury et al. 2011)

Pezzuto et al. 2012, A\&A, 547, A54
Wavelength ($\mu \mathrm{m}$)
~ 75 \% of prestellar cores form in filaments, above a column density threshold $\mathrm{N}_{\mathrm{H}_{2}} \geq 7 \times 10^{21} \mathrm{~cm}^{-2}$ $\underset{10^{21}}{\text { Aquila curvelet }} \mathrm{N}_{\mathbf{H}_{2}} \operatorname{map} \underset{\left.\mathbf{1 0}^{\left(\mathbf{c m}^{22}\right.}{ }^{-2}\right)}{(}$

André et al. 2010 + Könyves et al. 2010, A\&A, 518

Strong evidence of a column density "threshold" for the formation of prestellar cores

Distribution of background column densities
for the Aquila prestellar cores

Interpretation of the threshold: Σ or M/L above which interstellar filaments are gravitationally unstable

Filament fragmentation may account for the peak of the prestellar CMF and the "base" of the IMF
$\sum_{e_{0}}$ Core Mass Function (CMF) in Aquila Complex

Good mapping between core mass and stellar system mass: $\mathrm{M}_{*}=0.3 \times \mathrm{M}_{\text {core }}$
CMF peaks at $\sim 0.6 \mathrm{M}_{\odot} \approx$ Jeans mass in marginally critical filaments
$>$ Suggests prestellar cores at the peak of the CMF result from gravitational fragmentation of filaments

Role of filaments in massive star formation?

ALMA identification of a massive protostellar core at the center of a converging network of filaments

Most massive protostellar core ever observed?

See also Herschel/HOBYS results (PI: F. Motte) : massive star formation found in "ridges" at the junction of (supercritical) filaments (Schneider+ 2012)

Toward a new paradigm for star formation ?

$>$ Herschel results suggest star formation occurs in 2 main steps:

1) Filaments form first in the cold ISM, probably as a result of the dissipation of large-scale MIHD turbulence;
2) The densest filaments then fragment into prestellar cores via gravitational instability above a critical (column) density threshold $\Sigma_{\text {th }} \sim 150 \mathrm{M}_{\odot} \mathrm{pc}^{-2} \Leftrightarrow \mathrm{~A}_{\mathrm{V}} \sim 8 \Leftrightarrow \mathrm{n}_{\mathrm{H} 2} \sim 2 \times 10^{4} \mathrm{~cm}^{-3}$
$>$ Filament fragmentation appears to produce the peak of the prestellar CMF and likely accounts for the « base » of the IMF
$>$ Massive star formation tends to occur in «ridges » $\left(\mathrm{A}_{\mathrm{V}}>100\right)$ at the junctions of supercritical filaments
$>$ This scenario may possibly account for the global rate of star formation on galactic scales

A universal star formation law above the threshold?

ArTéMiS: A powerful tool to study massive star-forming « ridges » beyond the Gould Belt

APEX in July/Sep 2013 : NGC 6334 (d ~ 1.7 kpc)

