

Observations of high-redshift galaxies with Herschel and ALMA *Alain Omont (IAP, CNRS & UPMC) On behalf of H-ATLAS and other Herschel survey teams*

OUTLINE

Observations of high-redshift galaxies with Herschel and ALMA

- Introduction: Herschel high-z heritage
 - Herschel surveys have detected >5 10⁵ high-z SMGs (x100s number) Various types, clustered. Detectable with PdBI \rightarrow easy with ALMA
 - Herschel has detected more than 1000 high-z submm strong lenses Lenses increase the sensitivity by ~10 for studying high-z ULIRGs
 - But less than 100 (CO) redshifts: the third dimension is missing!
 - ALMA (and NOEMA): examples of programs with Herschel sources
 - 0) CO redshift measurement
 - 1) Lens identification/properties
 - 2) Use of lens magnification for deep studies of high-z galaxies e.g. H_2O ubiquitous emision

Frequency surveys \rightarrow high-z astrochemistry

3) Identifying SMG proto-clusters

Herschel surveys have detected >5 10⁵ high-z SMGs

Herschel SPIRE surveys (250-500 μm) have observed more than 1000 deg² (H-ATLAS 550 deg², HerMES ~350 deg² + SPT, AKARI-NEP, etc.)

vs ~1-2 deg² by pre-Herschel submm/mm surveys (SCUBA, etc.) from the ground

Thanks to the FIR SED ("inverse K-correction") they are extremely powerful for detecting high-z sources

Half are ULIRGs at z>1 (SFR >~ 300 Mo/yr)

 \rightarrow >5 10⁵ high-z Herschel submm galaxies (SMGs)

Similar to SCUBA 850µm SMGs, but slightly warmer on average

Half a million of high-z SMGs

Treasury for decades of high-z studies

Extreme SFR: merger starbursts or extreme main sequence Most luminous (LFIR>10¹³Lo, HyLIRGs) \rightarrow maximum starbursts

Already large stellar mass at peak of star formation \rightarrow progenitors of massive galaxies today: ellipticals or groups

Various (rare) types: T_{dust}, AGN, metallicity, various merger stages, structure, outflows, etc.

Trace evolution of massive galaxies. Specially important at highest redshifts (rare)

Highly clustered. Trace dark matter halos \rightarrow large structures

Easily detectable in CO and continuum at PdBI \rightarrow easy ALMA comprehensive studies

Herschel has detected >1000 high-z submm strong lenses See talks by Nicole Nesvadba and Daniel Schaerer

Very strong sources

- F_{250-350-500µm} >~100 mJy,
- F_{850µm} >~25mJy,
- F_{1.2mm} >~10mJy

Strongest lenses increase the sensitivity by >~10 for studying high-z (LIRGs/)ULIRGs

The power of gravitational lensing Since 20 yr lenses have marked the frontier of high-z mm radioastronomy

Submm wide surveys are ideal for finding high-z lenses

- High-z submm sources are very strong ('inverse K-correction')
- Very steep unlensed counts

A significant percentage à of the strongest SPIRE sources are high-z lenses

à Very easy to identify from local galaxies (+ blazars)

SMA 870µm + Keck i-band Negrello et al. 2010

PdBI 1.2mm Neri, Cox, Ivison priv. comm.

Lens template

First Herschel lenses (H-ATLAS SDP field)

Lensed image (Einstein ring) of H-ATLAS SDP.81

Herschel has detected >1000 high-z submm strong lenses

➢ Very strong sources F_{250-500µm} >~100 mJy F_{850µm} >~25mJy F_{1.2mm} >~10mJy

- Most deflectors are massive spheroids with a few spirals and groups
- ➢ Redshifts of the deflectors ~0.2 to >1 much higher than for the deflectors of optical lenses → evolution of dark-matter halos at z~ 1

à Strongest lenses increase the sensitivity by ~10 for studying high-z (LIRGs/)ULIRGs

Herschel high-z heritage

Half a million of high-z SMGs A thousand of high-z lenses

Treasury for decades of high-z studies

But major drawbacks

- Less than 100 (CO) redshifts have been measured: the third dimension is missing!
- Herschel (SPIRE) has a poor angular resolution (18"- 36") Many sources are blended, especially at 500 µm
- ALMA and NOEMA can help on both points by efficiently measuring CO redshifts and providing snapshot images

Redshift determination of high-z SMGs with ALMA

- > Redshift knowledge is absolutely essential for any study of high-z sources
- Photometric redshifts of Herschel SMGs is often somewhat uncertain
- > Optical/near-IR spectroscopy is difficult: faint sources, needs accurate position
- > ALMA is very efficient for blind (CO) redshift surveys of SMGs e.g. Weiss et al. (2013, Cycle 0):
- 26 SPT strongly lensed SMGs
- 5 frequency set-ups to cover the whole 3mm Window
- 2 min per setup with 14-17 antennas
- Groups of nearby sources
- At least one strong line in 23 sources
- à secure redshift for 70% of sample
- The same method remains efficient with full ALMA for unlensed Herschel SMGs: highest z, clustering, etc (+ lenses)
- NOEMA will be fully competitive with ALMA for this major goal

Lens identification and properties See talks by Nicole Nesvadba and Daniel Schaerer

- Very strong sources $F_{250-500\mu m} > 100 \text{ mJy } F_{850\mu m} > 25 \text{mJy } F_{1.2mm} > 10 \text{mJy}$
- Blind CO redshift measurement feasible at 30m-EMIR, PdBI, GBT, CARMA, CSO, APEX, LMT, etc.
- But ALMA and NOEMA are much more efficient and will be needed for measuring up to >~1000 redshifts (see Weiss et al. 2013)
- Cosmological interest because of higher z of lens dark matter halo
- Increased sensitivity for deep studies of various (rare) high-z (LIRGs/)ULIRGs
- ALMA and NOEMA fast snapshot imaging is also needed for discarding spurious blends
- Lens models and dedicated studies of prominent cases through ALMA or NOEMA high-resolution imaging see e.g. SMA Bussman et al. 2013, PdBI Ivison, Cox, Neri et al. in prep.

H₂O at high redshift in Herschel lenses

- H_2O lines have been found very strong by Herschel (SPIRE-FTS, etc.) in 40 local (LIRGs/)ULIRGs, with intensity ~0.3-0.5 next CO lines

- Similar situation is expected in high-z ULIRGs (and HyLIRGs up to 10 times more IR luminous without local equivalents), and thus H_2O lines should be easily detectable in strong lenses.

First high-z detections of H₂O in Herschel lenses (Omont+ 2011, 2013, Combes +2012) concomitant with confirmed detections in historical lensed QSOs: lensed: APM08279 z=3.9 van der Werf+ 2011, Lis+ 2011, Bradford+2011, Cloverleaf, other Herschel or SPT z~4-6 sources Riechers+ 2013, Weiss+ 2013, Bothwell+ 2013.

H₂O seems strong in all Herschel lenses 15 detections in H-ATLAS lenses at PdBI

Properties of H₂O emission

Comparison with CO *PdBI CO: Cox, Ivison et al. in prep.*

- Striking similarities of line profiles (noisy H2O in SDP.81 noisy CO in G12.v2.30)
- → Same region of emission
 → No strong differential lensing
- Comparable H₂O and low-J CO intensities (but CO at 3mm, H₂O at 2-0.85 mm)
- Similar H₂O and adjacent high-J CO lines (H₂O/CO ~ 30-50%)
- Similar strong H₂O and continuum flux densities

PdBI low-resolution maps

11*46"38.0

14^h24^m14^a5 14.0

14^h24^m14^{*}5 13.5

13.5

14.0

Inferred conclusions for H₂O in high-z ULIRGs

- The detection of H₂O implies special excitation conditions and a warm dense gas, possibly similar to Arp220/Mrk 231 in an intense IR field with higher luminosity, but maybe different, more extended with shocks.
- The high H₂O/CO ratio makes it unlikely that the H₂O emission originates in classical PDRs.
- The similarity of H₂O and CO profiles is striking. The emission takes place in similar regions, with not much differential lensing
- However, the excitation and line formation of H_2O are very complex , and this needs to be further explored by higher excitation lines of H_2O at PdBI \rightarrow ALMA

Prospects for H₂O studies in Herschel lenses (with ALMA)

- > (Full) ALMA (and NOEMA) could easily detect H₂O multi-lines in hundre of Herschel high-z lenses
- > Together with high-J CO lines, H_2O lines will provide rich information about the conditions in the dense, warm, shocked ISM
- The full ALMA (and NOEMA) sensitivity will also allow detection of weaker lines such as:
 - Absorption lines (seen in Arp 220 etc.)
 - Outflows (seen in Arp 220 & Mrk231)
 - Isotopologues H₂¹⁸O, H₂¹⁷O
- Other molecules detected in Mrk 231 & Arp 220: OH⁺, H₂O⁺ (allowing diagnostic of H₂O chemistry), HF, etc.
- And many other molecules allowing, together with H₂O, further checks
- of the warm, dense ISM