AS-ALMA

The importance of high angular resolution to understand the formation of massive stars

D. Russeil, J. Tigé, A. Zavagno + HOBYS consortium LAM - Université d'Aix-Marseille - CNRS

The Context

The massive star formation problem !

Radiation pressure => stop further accretion !

The monolithic collapse of a massive cloud fragment supported by supersonic turbulent pressure (e.g. Mc Kee & Tan, 2002)

A high accretion rate expected !

-> Increasing accretion rate in turbulent cores, accretion via disks, escape of radiation through wind-blown cavitities ...

(e.g. Yorke and Sonnhalter 2002, Krumholz and Tan 2003, Krumholz et al. 2005 ...)

Or new views:

- The coalescence scenario : high (~10⁸ pc⁻³) protostellar/stellar density of a forming cluster + collisions and merging (e.g. Bonnel et al. 1998)

- The competitive accretion in a clustered environment (Bonnel et al. 2004)

Observations: search, find and study the earliest phase of the massive star-formation

Observationnal Evolutionnary sequence:

1) High mass starless core --> no activity

2) High mass core harboring accretion/outflow --> Molecular lines (SiO, HCO⁺, CO, ...)

3) High mass protostellar object --> HII region/radio source, Maser, Spitzer-IRAC YSOs, 24 μ m and/or 70 μ m point source(s)

Spitzer three-color composite image 3.6, 4.5, and 5.8 (blue, green, red)

4) Final stars --> classical OB stars + HII region

Observationnal Evolutionnary sequence:

1) High mass starless core --> no activity

2) High mass core harboring accretion/outflow --> Molecular lines (SiO, HCO⁺, CO, ...)

3) High mass protostellar object --> HII region/radio source, Maser, Spitzer-IRAC YSOs, 24 μ m or 70 μ m point source(s)

Spitzer three-color composite image 3.6, 4.5, and 5.8 (blue, green, red)

4) Final stars --> classical OB stars + HII region

The data

The Herschel HOBYS survey

- Target all molecular cloud complexes forming OB-type stars at dSun < 3 kpc
- Wide-field PACS/SPIRE imagings (70, 160, 250, 350, 500 μm) with 20''/sec

HPBW = 6"-36.9" @ 0.7-3 kpc -> down to 0.03-0.2 pc dense cores

- census of intermediate- to high-mass protostars
- ⇒ link between cloud structure and (high-mass) SF
- ⇒ feedback effects
- Complementary to other *Herschel* KPs:
 - high-mass dense cores (small and isolated clouds) EPOS (Krause et al.)
 - low-mass cores (~0.02 pc) HGBS, Cold Cores and HOPS survey (André et al.; Juvela, Ristorcelli et al.; Megeath et al.)
 - protoclusters (~1 pc clumps) Hi-GAL (Molinari et al.)

Massive star formation in NGC6334 ($d \sim 1.7 \text{ kpc} - \text{core size } 0.05 - 0.3 \text{ pc}$)

- Study of the earliest phase of the massive stars formation: Tigé et al. in preparation

- Study of the filamentary structures: Probability density function

=> different evolutionnary status across the region (Russeil et al. 2013)

PACS 70 μ m, SPIRE 250 μ m, 500 μ m

100

 $-110, 0 - 70 \mu m, 13000 models - 001. dent$

Circles = radio sources / HII reg. Dashed circles = SNR ?

The massive dense cores ($M \ge 80 M \odot$)

 $\begin{array}{l} Crosses = F70 \mu m < 132 \ Jy \\ Circles = F70 \mu m \geq 132 \ Jy \end{array}$

Diamonds = quiescent massive dense cores, potential progenitors of high mass stars

Col. Dens. map

Ò

ments

★ Massive dense cores: in filaments/ridges + HII region border

☆ Few massive starless cores

Importance of the HII regions: trigerred star-formation

★ Comparison with MDCs in NGC 6357 powered by Pismis 24

Deharveng et al. 2010

Why high spatial resolution ?

Fragmentation and local kinematics

Peretto et al. 2013 IRDC SDC335

Two cores identified from ALMA 3.2 mm dust continuum emission.

Herschel col. Dens. map

Feeding of the core by filaments

Outflows : identification and characterisation

Duarte-Cabral et al. 2013 MDCs in Cygnus X

Fco = momentum flux = Msun km/s yr^{-1}

Chemical composition

Foster et al. 2013

=> good tracer of high-mass protostellar environment (accretion/outflow)
=> line profile change with time

NH₂D, Pillai et al. 2011

=> good tracer of cold and dense gas

=> destroyed in protostellar cores

Chemical abundance => core evolution

Conclusions

- HOBYS regions:

- Both south and north -> ALMA + PdBi
- Already existing low resolution molecular data (MOPRA, MALT90)
 -> general kinematic
- Galactic plane HiGAL survey:
 - Selection of massive dense clumps on Galactic scale
 - Arm-inter-arm, inner-outer disk
- Caracterisation of the massive dense cores:
 - -> A « large number » for statistic
 - -> Different location in our Galaxy
 - -> Different environment (HII regions, filaments)
 - -> Different evolutionnary stage

